Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38140133

RESUMO

OBJECTIVE: This study aimed to develop a holobiont tablet with rapid dispersibility to provide regulation of the microbiota, virucidal activity, and skin barrier protection. METHODS: A 23 factorial experiment was planned to define the best formulation for the development of the base tablet, using average weight, hardness, dimensions, swelling rate, and disintegration time as parameters to be analyzed. To produce holobiont tablets, the chosen base formulation was fabricated by direct compression of prebiotics, postbiotics, and excipients. The tablets also incorporated solid lipid nanoparticles containing postbiotics that were obtained by high-pressure homogenization and freeze-drying. The in vitro virucidal activity against alpha-coronavirus particles (CCoV-VR809) was determined in VERO cell culture. In vitro analysis, using monolayer cells and human equivalent skin, was performed by rRTq-PCR to determine the expression of interleukins 1, 6, 8, and 17, aquaporin-3, involucrin, filaggrin, FoxO3, and SIRT-1. Antioxidant activity and collagen-1 synthesis were also performed in fibroblast cells. Metagenomic analysis of the skin microbiome was determined in vivo before and after application of the holobiont tablet, during one week of continuous use, and compared to the use of alcohol gel. Samples were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. RESULTS: A handrub tablet with rapid dispersibility was developed for topical use and rinse off. After being defined as safe, the virucidal activity was found to be equal to or greater than that of 70% alcohol, with a reduction in interleukins and maintenance or improvement of skin barrier gene markers, in addition to the reestablishment of the skin microbiota after use. CONCLUSIONS: The holobiont tablets were able to improve the genetic markers related to the skin barrier and also its microbiota, thereby being more favorable for use as a hand sanitizer than 70% alcohol.

2.
Life (Basel) ; 13(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676095

RESUMO

Mosquito-borne diseases affect millions of people worldwide each year, and the use of a topically applied insect repellent is an economically viable preventative health practice. The general objective of this work was to encapsulate citronella oil (CO) in a nanostructured lipid carrier (NLC) to formulate a topical repellent with a long duration of efficacy on the skin and a good safety profile based on minimizing skin penetration. In the studied CO, the main chemical constituents of geraniol, citronellal, and citronellol were identified and subsequently used as markers for the in vitro skin permeation testing (IVPT). An optimal NLC encapsulating CO formulation was developed and had an average particle size of 350 nm. The NLC was then formulated in combination with CO at ratios of 2:1, 1:1, and 1:2 CO:NLC-CO as oil-in-water (O/W) emulsions and compared to CO in the same O/W emulsion base (all at 10% CO in the final O/W topical formulation). The markers geraniol, citronellol, and citronellal were detected in all samples tested F1 (10% CO in O/W emulsion) and F3 (10% CO/NLC-CO 1:1 in O/W emulsion). Even the percentages of F3 markers were higher than F1. The recovery of the percentage balance (based on the total remaining on the skin surface, on the skin, and penetrated through the skin to the receptor) of geraniol, citronellol, and citronellal markers for F1 and F3 was 7.70% and 11.96%; 25.51% and 31.89%; and 5.09% and 4.40%, respectively. The nanoparticle lipid solid forms a repellent reservoir on the skin surface, releasing the active ingredients slowly through volatilization, extending the repellent action, and reducing permeation through the skin. It is possible to assume that the remaining 92.30% and 88.03%; 74.49% and 68.11%; and 94.10% and 95.60% of geraniol, citronellol, and citronellal markers of F1 and F3, respectively, were lost to evaporation. In the in vivo efficacy test carried out with the Aedes aegypti mosquito, F3 was the optimal formulation, providing the greatest repellent action compared to free oil in O/W emulsion. Thermal analysis showed that the NLC-CO raised the boiling point of the encapsulated CO compared to the free oil, suggesting that the controlled release of the CO was a possible mechanism for its prolonged effect. We concluded that the nanocarriers developed with CO were stable and provided improved mosquito-repellent efficacy with minimal skin penetration of the CO actives over 24 h. Indeed, regardless of whether the CO was applied as free oil, a 1:1 mixture of CO (pure/free oil) or NLC-CO applied in an O/W emulsion can be considered safe for topical application due to minimal skin penetration.

3.
Curr Drug Deliv ; 20(9): 1275-1287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35984015

RESUMO

Mosquito-borne diseases such as dengue, malaria, yellow fever, chikungunya and Zika virus affect millions of people worldwide each year. Vector control and personal protection are very important to minimize the spread of diseases, and the use of repellent is an economic practice to prevent them. The application of repellent, which acts on the skin to form a vapor layer with a repellent odor to mosquitos, is recommended as an economic prevention and practice. The natural botanical product Citronella is an effective mosquito repellent due to the high concentrations of active chemical constituents present, notably terpenic alcohols. However, citronella tends to evaporate quickly from the skin surface, resulting in a rapid loss of activity. Strategies to increase repellency time, while at the same time minimizing toxicity, are major focuses of research and development in natural repellent products. Here we highlight the role of extended-release systems (ERS) of citronella oil in this approach.


Assuntos
Produtos Biológicos , Repelentes de Insetos , Malária , Infecção por Zika virus , Zika virus , Animais , Humanos , Repelentes de Insetos/farmacologia , Composição de Medicamentos , Terpenos
4.
Curr Top Med Chem ; 18(4): 287-299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651933

RESUMO

It is critical to develop an effective understanding of the interaction between the drug, delivery system and skin in order to predict and assess skin penetration and permeation. Experimental models for the assessment of topical and transdermal delivery systems must permit evaluation of these complex interactions. Whilst in the past, animal models were commonly used, recent regulatory guidelines, based on 3R principles (refinement, reduction, replacement), encourage the rational use of animals. Alternative methods have been proposed for use in the development of topical and transdermal delivery systems which are often used in combination. We will review the current state of the art in alternative methods for topical and transdermal delivery systems development, including technologies that can assist in the characterization of skin penetration/permeation studies.


Assuntos
Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...